电商行业数据分析具体有哪些方法(常用的4种方法)


随着数据时代的到来,各行各业的经营发展开始注重数据分析思维。通过数据,我们可以了解产品的好坏、用户的喜爱程度,从而用数据去解决产品存在的问题。

数据分析更多的是基于业务背景来解读数据,把隐藏在数据背后的问题总结出来,发现其中最有价值的东西,再加以优化。

在提炼数据的整个过程中,人是主观的,而数据是客观的。同样的数据但不同人解读出来的结果肯定是不一样,但结论的本身并没有错。那么我们做电商数据分析师常用的方法有哪些呢?

电商数据分析常用的四种方法,数据分析必备

当开始数据分析产品时,首先分别分析每个变量,以描述拥有的数据并评估其质量,接下来分析每个变量之间的关系。这里我把电商数据分析分为四大版块:即对比分析、转化分析、留存分析、产品比价。

1.对比分析

横向对比:简单的说就是和谁对比?假如说我们上个月店铺的成交额增长了30%,那么我们是不是应该开心呢?

当然不是,这里我们还要参考竞争对手的成交额,如果你的竞争对手增长了50%呢?这个时候我们就需要一个参考指标。数据时代,我们可以很轻易的拿到竞争对手的相关数据。

纵向对比:我们可以把近15天的成交额以线条的形式显示出来,这样就可以很清楚的看到近期的成交额是否达到预期,有没有下降趋势,当然我们也可以以季度、月或周为单位。

电商数据分析常用的四种方法,数据分析必备

(图片来源于网络)

我们也要考虑到日常生活中的特殊场景,比如双11、双12、元旦等活动促销,那么成交额是否会暴涨。所以在做纵向对比的时候,一定要考虑所有的情况,也许你的商品恰逢周末就是卖不出去呢?我们还可以这样考量:

(1)最近一个季度,每周六日的成交额。

(2)近三年双十一当天的成交额等等。

2.转化分析

这里牵涉到一个问题,评判一家电商企业需要用到的一些日常统计指标:

(1)店铺的目标用户数量:一家店铺的成交量,反映的是这家店铺对于市场的影响以及用户对于产品的满意度。

(2)平均消费金额:店铺每年平均每位用户消费了多少,以此来定位目标人群,确定是否达到盈利的指标。

(3)用户的复购率:判别产品满意度,假如用户购买过一次后,还会购买第二次,说明用户对于你的产品还是很满意的,这样既节省了市场推广费用,用户也会推荐给更多朋友来够买。

根据公司目标用户,确定转化指标。

(1)混合模式:复购率不足30%,说明经营的中心应该放在维护老用户,以及大力发展新用户。

(2)忠诚度:老用户的复购率在60%,说明老用户对于公司的产品足够满意、放心,这个时候你就可以把重心放在发展新用户上。

电商数据分析常用的四种方法,数据分析必备

3.留存分析

我们通过活动等形式把用户引流到我们的流量池里,但是经过一段时间后,用户可能就会慢慢的流失了。那些留下来或者经常访问我们店铺的用户称之为留存。

电商数据分析常用的四种方法,数据分析必备

(图片来源于网络)

我们常常用到的日活跃用户量、月活跃用户量、季度活跃用户量,来检测我们店铺的流量。有的时候可能会看到我们的日活,在一段时期内都是逐渐增加的,以为是非常好的现象,但是如果没有做留存分析的话,这个结果很可能是一个错误的。

留存是产品的核心,用户只有留下来,我们的产品才能不断增长。如果我们什么都不做的话,用户很快的就流失了。

4.产品比价

大部分电商公司会频繁搞促销,一般来说每次打的旗帜无非是全网最低,但是如何才能确定是全网最低呢?

这个时候就需要我们去搭建一个比价系统,这个比价系统的目的主要是为了去抓取各大电商平台商品的价格。通过各大电商平台的价格以及优惠额,来制定你自己的策略。

电商数据分析常用的四种方法,数据分析必备

(图片来源于网络)

通过对比其他平台的产品来战略性的调整自己的产品,这样就可以避免自己的产品价格调整后,消费者不买账的情况。

产品的定价是一件极其重要的事情,如何做到买一送一,买多少减多少的情况下,公司的盈利不受影响,这就需要我们数据分析师起作用了。

以上就是我根据电商数据分析列出的四大板块,我们在不同的行业需要用不同的形式把它展示出来。在数据面前,清晰的知道自己应该如何运营,那一种方法解决实际问题才是最有效的,学以致用。结合场景灵活运用,没有最好的分析方法只有最适合的,欢迎大家点评以及纠正!

CDA(数据分析师认证),由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。

本着提高企业、高校、学生、求职者之间联动性的宗旨,在数据界有志人士的共同努力下,CDA数据分析师认证应运而生并迅速得到中国银行、IBM大数据大学,中国电信,国家电网,德勤,CDMS、Oracle、德国云网、Meritdata、法国布雷斯特商学院等认可。

电商数据分析常用的四种方法,数据分析必备

同时跻身为2020年终身学习品牌项目,担当连接企业、高校、从业者的纽带角色。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发表评论

登录后才能评论